

B. Tech. Civil - Sem VII Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058. End Semester Exam May 2017

Max. Marks: 100

Semester: VII Class: B.Tech. Name of the Course: Advanced Structural Analysis

Duration: 3 Hours Program: Civil Engineering Course Code: BCT406

Master file.

Instructions:

Attempt any FIVE questions out of SEVEN questions.

Answers to all sub questions should be grouped together.

Figures to the right indicate full marks.

Assume suitable data if necessary and state the same clearly.

Question No		Max. Marks	Course Outcome No.	Module No.
Q1 (a)	Define and explain the meaning of symmetric structure with the help of example. Also state the advantage of Symmetric structure.	3	2	3
Q1(b)	Analyse the rigid jointed frame shown in Figure by flexibility method and draw BMD and deflected shape. Note that D is simply supported on elastic foundation, which is free to move horizontally and also free to rotate. EI = $1 \times 10^4 \text{ KN-m}^2$ and $K_s = 1000 \text{ KN/m}$.		2	4

	B. Tech. Civil- Sem VII			
Q1 (c).	For the non-prismatic beam element shown in figure calculate the stiffness coefficients K_{11} and K_{21} . Also calculate the COF from A to B	9	2	4
Q2 (a)	Analyse the beam shown in figure by Matrix Stiffness Method. Note that support 'B' settles down by 10 mm. EI== 10,000 KN/m^2 .	8	1,4	2
Q2 (b)	Using Column Analogy Method, analyse the beam shown in figure and draw BMD and Deflected shape. A 2T C T 6m B 3m + 6m	12	2	4
Q3(a)	Derive the modified stiffness and carry over factor for a symmetric beam (axis of symmetry passing through center of beam) subjected to Anti- symmetric loads	2	2	3
Q3 (b)	Analyse the frame shown in figure by Elastic Centre Method and draw BMD, SFD and deflected shape.	18	2	4

4m

4m

B. Tech. Civil - Sem VII

	Analyse the frame shown in figure by Modified Moment Distribution Method and draw SFD, BMD & deflected shape.	20	2	3
	GOW I I I I I I I I I I I I I I I I I I I			
Q4	30KJ 1-5I 1:5I 4m			
	21 21 4m			
	Analyse rigid jointed plane frame shown in figure by Matrix	08	1,4	2
Q5 (a)	Stiffness Method and draw BMD and deflected shape. Stiffness Method and draw BMD and deflected shape.		·~ 7 *	
	Analyse the frame shown in figure by Method and draw	12	2	6
Q5(b)	SFD, BMD and deflected shape. SFD, BMD and deflected shape.		•	

B Tech · Civil - Sem VII

(i) State and prove Muller Breslau's Principle 3 5 4 Q6(a) 5 For the beam shown in figure, construct the ILD for: 3 16 (i) Reaction at 'C' R_c (ii) Moment at 'B' M_B Q6(b) Show the ordinates of ILD at 2m intervals 7 Using plastic analysis, determine the load factor for the frame 2 16 loaded as shown in figure. The Plastic Moment capacity of each member is indicated in the figure. 20 W/m Q7(a) 3m 30kN 120(i) Explain the need of approximate methods of Analysis 5 2 2

(ii) State the various approximate methods of analysis for

Q7b)

vertical and lateral loads.

5

2

2

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

END SEM EXAMINATION

NOVEMEBR2017

Program: Civil Engineering

B. Tech.

Course code: BTC 403

Name of the Course: Water Resources Engineering

Semester: VII Instructions:

Duration: 3 hr Maximum Marks: 100

Master Sile.

- 1. Question number one is compulsory.
- 2. Out of question no. 2 to question no. 7 attempt any four questions.
- 3. Neat diagrams must be drawn wherever necessary.
- 4. Figures to the right side indicate full marks.
- 5. Assume Suitable data if necessary and state it clearly

Que. No.		Max. Marks	Course Outcome Number	Module No.
Q1(a)	The left branch canal of main canal running for very long distance, carrying a discharge of 20 cumecs has culturable commanded area of 20000Ha. The intensity of irrigation of rabi crop is 80% and base period is 120 days. The right branch of the same main canal carrying discharge of 8 cumecs has culturable commanded area of 12000 Ha. The intensity of irrigation of Rabi crop is 50% and base period is 120 days. Compare the efficiencies of the two canal systems.	5	CO3	2
(b)	Discuss Irrigation Systems	5	COI	2
(c)	Five rain gauge stations A,B,C,D &E are located on a circular shaped basin of diameter 20 km as shown on figure. Compute the mean areal rainfall over the basin using Thiessen Polygon Method if the rainfall at station A,B,C,D,&E are 100 cm, 90 cm, 110 cm,120cm & 80cm respectively	5	CO2	3
(d)	Elaborate the design of Irrigation channel by Kennedy's Method.	5	CO4	7
Q2 (a)	Compute the average discharge requirements and peak	6	CO3	2

B. Tech · C(V) - Sem VII demand for the data given below in the table

Crop	Area under	Total Depth	Base Period (in Days)	Average duty (Ha/Cumecs)
	Crop (Ha)	37.5	140	3225.6
Wheat	5000	37.3	120	864
Rice	2500	120	120	

For Wheat- Kor Depth=13.5 cm and Kor period=4 weeks For Rice- Kor Depth=19 cm and Kor period=2.5 weeks

	For Rice- Kor Depth=19 cm and Kor period 2.	7	COL	2
(b)	Your field is in an area, where water-logging is predominant phenomenon. Suggest suitable remedial	,		
	measures to solve the problem of water-logging.	7	CO2	3
(c)	Explain the types of precipitation.	10	CO2	3
Q3 (a)	A storm over a catchment of area 5 km² had duration of 14 hours. The mass curve of rainfall of the storm is as	. "		
	follows:	a lateral and the second secon	L.,,,,,,,,	in place a state of 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

					0	10	12	14
Time from Start of	0	2	4	O	0	10	1.2	
Storm (hrs)			4				0.0	0.7
Accumulated	0	0.6	2.8	5.2	6.7	7.5	9.2	9.6
Rainfall (cm)								

If ϕ index for the catchment is 0.4cm/hr. Determine the effective rainfall hyetograph and volume of direct runoff from the catchment due to storm.

	Describe recuperation test for an open well	5		4
(b)	Describe recuperation test for all open wen	5	CO2	2
(c)	Discuss the factors affecting duty.			
Q4 (a)	A tube well penetrates fully in a 8.5m thick water bearing stratum. The coefficient of permeability of the stratum is 0.006m/sec. The diameter of the tube well is 30 cm and it is to be worked under drawdown of 5.5m at the face of well. Determine the well discharge if the radius of the well is increased to 20 cm, What will be the increase in its	7	CO4	4
	discharge. Assume the radius of the drawdown as 250m.	6	CO4	5
(b)	Discuss the methods of control of sedimentation in a	Ü		
	reservoir.	7	CO4	6
(c)	Explain the advantages and disadvantages of Buttress	,		
	dam.	12	CO4	6
Q5 (a)	A masonry dam 10 m high is trapezoidal in section with a top width of 1 m and bottom width of 8.25m. Face exposed to water has a batter of 1:10 Calculate: i. FOS against sliding ii. FOS against overturning iii. Shear Friction Factor (SFF) Is it safe in sliding and overturning, assuming µ=0.75, Unit weight of masonry=2240kg/m³. Permissible shear stress of joint=14kg/cm² Neglect wplift pressure Based on the results give your remark.			

	B. Tech. Civil - Sem VII			
	1m			
(b)	Discuss Tipping Bucket Type rain gauge.	4	CO2	3
(c)	Discuss control of seepage through earthen dam.	4	CO4	6
Q6 (a)	Derive expression for Phreatic line in a dam with horizontal drainage Filter in case of earth dam. Also derive expression for discharge.	10	CO4	6
(b)	Define spillway and discuss various types of spillways.	10		6
Q7 (a)	Design a regime channel to carry a discharge of 40cumecs by Lacey's theory. Assume the side slope to be 1:1. The average size of the bed material may be taken as 0.8mm.	9	CO4	7
(b)	Describe various types of cross drainage works	8	CO4	7
(c)	Explain the terms firm yield, average yield and secondary yield.	3	CO2	5

B. Tech · Civil - Sem VII

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058. End Semester EXAM OLLEGE OF

Max. Marks: 100

Class: B.Tech

Semester: VII

Name of the Course: Risk & Value Mangement

Q. P. Code: Duration: 3 Hrs

Program: Civil Engineering

Course Code: BTC 413

Master file.

Instructions:

1. Q.1 is compulsory & Attempt any four out of six.

2. Make suitable assumptions where necessary and state them clearly.

Questio n No		Max. Marks	Course Outcome Number	Module no.
Q.1	Solve any Four 1) Apply the Value engineering in the context of Building Project 2) Break even analysis 3) Enlist & explain the steps of computation of life cycle costing. 4) Value management & its nature. 5) Risk Handling options in Risk Management 6) Factors impacting energy consumptions in building	20	1-3	1-7
	A) Define; Risk & its types in Construction industry. Also explain any two ways for risk mitigation/reducing strategies in above industry	06		
Q.2	B) Define: Risk Management. Also explain various steps involved in risk management.	08	01	1-2
	C) Explain factors which help in determining risk impact during construction phase. (any twelve)	06		
	A) "Risk register is not only a record of events but also workbook of all risk mitigation strategies" Justify above statement while discussing the concept, significance & important components of it.	08		
	B) According to ISO 27001, "Residual risk is the risk remaining after risk treatment". Briefly explain above statement along with its relation to residual risk management.	06		
Q.3	C) Explain following terms 1) Risk Appetite 2) Risk Exposure Find out total risk exposure for the following events i) Failure to complete project on time (probability is 40% for two weeks delay & penalty is 2 Lakh/week) ii) New regulatory poke (probability is 20% & redesigning cost is 1 Lakh) iii) Material shortage for vendor (probability is 40% & additional expense is 1Lakh)	06	01	03

			_
B. Tech.	C^{*}	1 - Cana	1/11
B. JEON.	CIVI	1- Jem	

	B.Tech · Civil-Sen							
	A) A large steel manufacturing composition to production: 1) produce commercial producing steel. The management has built, has 0.8 chance of high yield & plant does show high yield, management that the commercial plant will also have shown a low yield, there is only 0.1 show high yield. Finally management commercial size plant without build chance of high yield. A pilot plant we carned under high & low yield conductable - Rs 12,00,000 respectively. Find the B) What is Net Present Value & Pay	ot plant if If pilot y of 0.75 ot plant plant will y yield on a a 0.6 The profit 0/- and company	08					
	following table [i=10%]	, 1				06		
0.4	Year 0 1 2	3	2222	4	5		1,2	02
	C) Define Social Cost benefit analyst Based on tabulated information which satisfying minimum required rate of	sis. ch proje	0000 ect shou	d be sele	cted for			
		Project I	P	Project	Q			
		60000/-		78000/-		06		
	Dirposto il	04		05				
	Net earnings Year wise	(000		7200				
		6000 4500		7200				
		4500 4500		6300				
		3000		3200				
	5 th			3000		and the same of th		
		18000		26900				
	A) Define Value Engineering. Also					08		
.5	B) Explain various value engineering job plans phases stating importance of each.					08	02	4-5
	C) How an enterprise can achieve excellence using value engineering? State its characteristics.					04		
	A) Explain the following terms;1) Value 2) Esteem Value 3) Exc4) Cost Value 5) Use Value	hange v	alue			05		
.6	B) How to add value to product or s	B) How to add value to product or service?				07	02	4-5
	C) Highlight some issues in building value in a construction project.			08				
	A) Explain the concept of Life Cycl & disadvantages. Also explain appr	oaches t	towards	life cycle	costing.	08		
0.7	B) Briefly explain various types of of project.	costs inv	volved i	in life cyc	le costing	04	03	07
Q.7	of project. C) With the help of discounted cash formulas, help Mr. Suraj in following conditions			08				

B. Tech. Civil - Sem VII

now. If to amount 1 2) If he is years. We to have to	quired Rs. 25,000 for his son's education about 12 years from bank is ready to give him 10 % annual interest, how much he has to keep in his account in single deposit? is obligated to pay his son's college fees Rs.8000 a year for 5 What single amount should be deposited in his account in order enough money for the payments? (10 % annual interest) as taken a mortgage of Rs.1, 00,000/- at 10% annual interest for	
20 years	s. What is the constant annual payment required to repay the	
loan?		
4) He or	pened a saving account and adding Rs.2000/year for next 5	
vears. H	low much he will have after 5 years? (10 % annual interest).	

Final year B. Tech. Civil. Sem VII Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058. End Semester Exam November 2017

Max. Marks: 100

Duration: 03 hours

Class: B. Tech.

Semester: VII

Program: Civil Engineering

Course Code: BTC402

Course -- Construction Engineering

Master file.

Instructions:

Q.1 is compulsory.

Attempt any four out of remaining six questions.

Assume suitable data if required and state it in the answer sheet.

Answer each question on a new sheet or page.

Figures to the right indicate full marks assigned to the question.

Q.no.		Max. Marks	Course Outcome	Module No.
1	 Answer (any five): 04 marks each Enlist factors (atleast 4) governing selection of a earth moving equipment Differentiate (atleast 4 points) single acting and double acting pile driving hammer Explain a) Depreciation b) Scrap Value Enlist the methods (atleast 4) of tunneling in a) soft soils and b) hard rocks Differentiate (atleast 4 points) between stone column and sand drains Give applications (atleast 4) of shotcrete. Enlist different types (atleast 4) of cladding materials 	20	CO1 CO1 CO2 CO3 CO1	1 to 7
	Calculate the hourly OWNERSHIP COST for a Truck- mounted crane with following information: Truck-mounted crane 150 ton w/260'; Lattice boom; Equipment horsepower: 207; carrier horsepower 430 List price = INR 11, 97,389 Discount: 7.5% Sales tax = 8.7% Estimated annual use in hours - 1590 h Total expected use in hours = 20,000 h Average conditions of use Tires front = INR 35200 Tires drive = INR 70400 Fuel cost = INR 60 per litre	07	CO1	1,3

Final year B. Tech, Civil, Sem VII Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering
(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058.

End Semester Exam

	End Semester Exam November 2017	The state of the s		paraulty to the sign of
	Taxes, insurance, and storage = 3.75% Salvage value = 20% Investment, taxes, insurance and storage - 13% Repair and maintenance = 37% depreciation cost Tire repair cost = 16% of straight-line depreciated tire			
2.h	A Cat D631E Series II wheel tractor scraper assisted with a D9R bulldozer is to be used to move dirt about 4200' to build a detention pond at the entry of subdivision. The D9R has ripped the soil in the area to be excavated about 18" deep. The D9 is to push the scraper until it is out of the hole. Once full, the scraper's average haul speed will be around 10 mph (miles per hour). The return route is about 4400' and the average return speed will be around 14 mph. The rated heaped capacity of the D631 is 31ley. The estimated load time according to the performance manual is 0.6 min. The estimated dump time is about 0.7min. Calculate the work hour productivity of the scraper, if the operator works 50 min per 60-min hour. Also, calculate the number of scrapers that the pusher (D9R dozer) can support. Hint: Work hour production = (Rated Capacity x operational efficiency) / cycle time Pusher cycle time = 1.4Ls + 0.25min, Ls is the load time of the scraper	06	z.V.	2
2.c	With a neat and labelled sketch, explain the components of a scraper	07		2
	The state of the s			1,3
3.a	Write a note on 'CONTROLLED BLASTING'. Give a detailed discussion on ROTARY AND PERCUSSIVE DRILLING.	10		2
3.b	A Volvo G740B motor grader with a 14' blade is to be used to move earth on a 66' x 9800' long road base area. The effective grading width is 12'. The average speed of the grader will be 3 miles per hour (mph). Two passes will be required to reach the desired smoothness. Calculate the work hour productivity if the operator works for 50min per 60-min hour. Also, calculate the time required (hours)	03	CO1	
3.c	to grade the road base area. Describe CRUSHER with its types and state the factors affecting the output of the crusher	07		2

Final year B. Tech, Civil. Sem VII Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058.

End Semester Exam November 2017

AND A PROPERTY AND ADDRESS.	NOVELLIOLI JULI		-	-
4.a	Draw a neat longitudinal c/s of a TUNNEL BORING	The second secon		The state of
7,4	MACHINE (TBM) and in short explain the working of TBM.	10	CO2	4
4.b	A power-shift crawler tractor has a rated blade capacity of 7.65 m3 (loose). The dozer is excavating loose common earth and pushing it a distance of 61 m with a dozing speed of 4 Kmph. Maximum reverse speed of the dozer in third range is 8 Kmph. Calculate the production capacity per hour of the dozer. (See Table 4b)	04	COI	2
4.e	Sketch and label the components of a typical belt conveyor system (BCS) and explain the function of Idlers and Feeder.	06	COI	2
5.a	Enlist the construction equipment to be used for the construction of DIAPHRAGM WALL (DW). With a neat sketch explain the steps for the construction of DW.	10	СОЗ	5
	A Case 750K bulldozer with a 8' blade is to be used to excavate and push fairly loose dirt. According to the soils report, the dirt to be moved has a 23% swell factor. When the dozer is hauled to the site a couple of blade loads are excavated to estimate a typical load. The average H = 4', the average load width is 6', and the load length is 9'. Actually observing and recording times for individual cycles and then finding the average observed cycle time is probably the most accurate way to estimate a typical production cycle time. The load time suggested by the manufacturer is about 0.08 min. Once the blade goes through the cut, the haul push is about 200' with an average speed of about 2.6 mph. Backtrack distance is about 240' and the dozer will travel at a speed of about 3.2 mph. Once back to the hole, the dozer takes about 0.06 min to reposition. The Case dealer suggests an O&O cost of about INR 4000/h. Your operator costs about INR 1500/h with contractor outlay. Estimate: a) Amount of dirt (lcy) moved in one production cycle b) Amount of dirt (bcy) moved in one production cycle c) Cycle time for one production cycle	10	COI	2

Final year B. Tech. Civil. Sem VII Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering (A Government Aided Autonomous Institute)

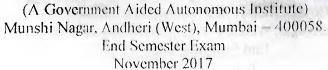
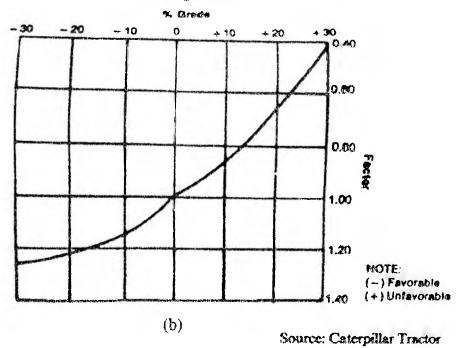



Chart 7b -2

% Grade vs. Dozing Factor

Final year B. Tech, Civil, Sem VII Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058. End Semester Exam November 2017

Table 7b-3

JOB CONDITION CORRECTION FACTORS

	TRACK- TYPE	WHEEL. TYPE
	TRACTOR	TRACTOR
OPERATOR -	***************************************	Profesional American State of
Excellent	1.00	1.00
Average	0.75	0.60
Poor	0.60	0.50
MATERIAL -	0.00	V.30
Loose stockpile	1.20	1.20
Hard to cut; frozen		
with filt cylinder	0.80	0.75
without till cylinder	0.70	
cable controlled blade	0.60	
Hard to drift: "dead" (dry,		
non-cohesive material) or		
very sticky material	0.80	0.80
flock, ripped or blasted	0.60-0.80	-
SLOT DOZING	1.20	1.20
SIDE BY SIDE DOZING	1.15-1.25	1.15-1.25
VISIBILITY -	1	
Dust, rain, snow, fog or darkness	0.80	0.70
Job Efficiency —		
50 min/hr	0.84	0.84
40 minint	0.67	0.67
DIRECT DRIVE TRANSMISSION		
(0.1 min. fixed time)	0.80	
BULLDOZER°		
Angling (A) blade	0.50-0.75	****
Cushioned (C) blade	0.50-0.75	0.50-0.75
D5 narrow gauge	0.90	-
Light material U-blade (coal)	1.20	1.20
GRADES — See following graph.		

^{*}Note Angling blades and cushion blades are not considered production dozing tools. Depending on job conditions, the A-blade and C-blade will average 50-75% of straight blads production

Final year B. Tech. Civil. Sem VII Bharatiya Vidya Bhavan's

Sardar Patel College of Engineer

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai – 400058.
END SEM

Max. Marks: 100 Duration: 3 hr Class: Btech

Name of the course: Limit State Method for RC Structures

Q.P. Code: BTC 401 Course Code: BTC 401

Sem-VII

Program: Civil Engineering

Master tile.

Instructions:

1) Question No. 1 is compulsory.

2) Attempt any four from the remaining questions.

3) Draw reinforcement details wherever necessary

4) Use of IS 456:2000 is permitted.

Qı	restion No		Maximum Marks	Course Outcome Number	Module Number
	a)	State and explain the assumptions made in LIMIT State of collapse(Flexure). Also draw stress and strain diagram across the section.	05	1	2
i	b)	What do you mean by Limit State. Explain various limit states.	05	1	2
	c)	When it is required to design doubly reinforced beam section. Also draw various forms of shear reinforcement provided in beam.	05	1,2	3
	d)	Derive design stress block parameters for singly RC sections for LSM of design.	05	1,2	entralita e prospero
	a)	RC section 230mmx550mm depth overall and reinforced with 4-20mm dia is used as simply supported beam over an effective span of 6m. Determine the maximum undl beam can carry safely. Use M 25 and Fe-500	10	1,2	3
2		A rectangular beam 400mm x700mm effective depth is reinforced with 6 bars of 20mm dia in tension zone. The beam is subjected to udl of 50kN/m over span of 8m. Design shear reinforcement if two bars are bent up at 45° near end of each support. Use M30 and Fe 500	10	1,2	3
)	a)	A RCC beam reinforced on tension side is 230mm wide with an effective depth of 500mm. It is reinforced with 4 bars of 20mm diameter. Calculate the ultimate moment of resistance using Ultimate Load Method. Take on 20N/mm² and	08	1	1

		Final year B. Tech. Civil. Sem VI.			part of the second
	b)	An isolated TEE beam section having an effective depth of 580mm, flange width of 12400mm, rib width of 300mm, slab depth of 120mm comprises of 8 bars of 20mm diameter. Calculate moment of resistance of beam. Use M-20and Fe-	12	1,2	4
	a)	Draw Pu-Mu curve for column of given proportions. Explain Region II and III of the curve in detail.	10	1,2	6
4)	b)	Design short helically reinforced column to resist service load of 1400kN.Use M30 and Fe 415.Draw reinforcement details.	10	1,2	6
5)	a)	Design a RC slab for an interior panel of a passage of a residential building. The size of panel is 4mx 4m.Using appropriate loading, design the slab panel. Give appropriate checks. Use M35 and Fe 415.	16	1,2	5
	b)	Explain in brief Whitney's theory	()4	1,2	. 1
6)	a)	A rectangular column of dimension 300mmx450mm is subjected to an ultimate axial load of 1000kN Design isolated footing for column assuming SBC as 250kN/m ² Use M30 and Fe 415.	15	1,2	7
	b)	Write a short note on various types of footing under various conditions showing sketches.	05	1,2	1
7)	a)	A RCC beam 3000min x450mm effective is subjected to an axial moment of resistance of 224kN-m. Find out the steel required using Ultimate Load Method. Take σ_{cu} =20N/mm ² and σ_{sy} =425N/mm ² .	10	1	l
	b)	Design one way slab panel of RCC residential building having dimensions 3mx6.5m. Using LL=2kN/m2 and FF-1.5kN/m2, design the slab panel. Give appropriate checks. Use M30 and Fe 415.	10	1,2	5

B. Tech - Civil - Sem VII Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

END SEMESTER EXAMINATION November-2017

Date: 22/11/17

Duration: 3hr

Maximum Marks: 100

Semester: VII

Program: B.Tech. Civil Engineering Course code: BTC407

Name of the Course: Advanced Computational Techniques

Note: Solve any Five

Assume the data wherever necessary and mention it clearly.

Master file.

Q.					М	ark	СО	M.N
No.					141	aik	CO	171.17
1a	The manager of oil refinery must of which the inputs and outputs Process Input Unit Units Grade A 1 5 2 4 The maximum amount available Market requirement shows that pe produced. The profit per pro-	Grade B 3 5 e of crudes A atleast 100 unicoduction run fe	run is as follow: Output Unit Gasoline X 5 4 and B are 200un its of gasoline X a or process 1 and 1	Gasoline Y 8 4 Its and 150 units respect nd 80units of gasoline Y process 2 are Rs 300/- are	ively. must nd Rs	3	3	6
1b	400/- respectively. Solve the LF Solve the following problem by Maximize $Z=6x_1+8x_2$ Subjected to the constraint $50x_1+10x_2 \le 60$ $4x_1+4x_2 \le 40$ $x_1, x_2, \ge 0$	simplex metho	od.		12	2	3	6
2a	The construction company is planning to sale its flat using different advertising strategy S1, S2 and S3. The marketing department of the company worked out the payoffs in terms of net profit for each strategy of three events of expected sales. This is represented in following table. Strategies State of Nature for sale							
	S1 7,00, S2 5,00, S3 3,00, State which strategy should i) Maximin criterion ii) Maximax criterion	000 000 000		Low 1,50,000 0 3,00,000 on the basis of	0	8	2	5
	iii) Equal likely decision iv) Opportunity loss of v)							

B. Tech. Civil - Sem VIII Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering (A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai – 400058

Sales	Probability		Profit				
Poor	0.2		12,00,000				1
Moderate	0.5		25,00,000			1	
Good	0.3		40,00,000				
For an additional fixed decision— making proceed negative, with probabilities research changes the process.	ess. The outcome ties 0.58 and 0.42	of the mark, respective nain sales pr	rket research car ly. Knowing the	i de eimer positive of	i		
Market Research	Poor	Moderate	Good				
D = 1,22,00	0.15	0.45	0.4				1
Positive Negative	0.13	0.45	0.05				
 Charlotte will make dec this problem. (b) Use ex Charlotte.	xpected monetary	value to de	termine the opting	nal course of action for			
The average number of intersection is 2.00. Ass a) What is the probability b) What is the probability c) What is the probability d) What is the probability d)	ume that the requity of no collisions ty that there will but of exactly two controlling not not the colling not	rements of the in any particle exactly on collisions in the core than two	ne Poisson distrib cular week? e collision in a wo a week? o collisions in a w	ution are satisfied. eek?	08	1	1
 A small hotel has rooms of improper maintenance probabilities that smoke a) What is the probability b) What is the probability at any one time?	s on only four floore, the probability detectors are fundity that exactly one lity that there will but one detector is	ors, with four that any one citioning are some detection at least 15 working.	r smoke detectors detector is funct randomly and ind ctor is working of functioning smo	s on each floor. Because ioning is only 0.55. The ependently distributed. In the top floor? I ke detectors in the hote	06	1	1
In a factory which prod of the block of their out production and is found i) What is probability the ii) Probability that is ca	tput 5%,4% and 2' to be defective. at it is casted from	% are defect machine A,	ive. A block is di	uce 25%, 35% and 40% awn at random from the	e 06	1	1
An AAC Block manufa to make 475 blocks. The blocks and standard devalent and What is the disselected blocks b) What sample standard blocks	ne contents vary a viation of 3 blocks tribution, mean, a? ize should be take	uses a machiccording to . nd standard n in order to 6 confidence	error of the samp estimate the mea	tion with a mean of 47 le mean of six randoml	y 04	1	2
The mean yield of of Assuming Normal distributed a) Above 700kgs	one acre plot is tribution how ma	662kgs an ny acre plot	d the standard	deviation is of 32kg ,000 plots would expec	s. 04	1	2
Define sampling and st			n brief with exam	oles	12	1	2

B. Tech. Civil - Sen VII Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering (A Government Aided Autonomous Institute)

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai – 400058

1-	24	35	41	47	51	55	60	64	70	76			
1 1	21						60	65	70	77			
	22	35	42	47	52	55 56	60	65	70	78			
L	26	36	43	48	52 52	56	61	65	73	79			
	28	36	43	48	53	56	61	67	73	80	12	1	1
_	32	37	44	49	53	57	61	67	74	82	120	-	
_	33	38	45	50	53	57	62	68	74	82			
-	34	39	45	50 50	54	58	62	68		84			
-	34	40	45	51	54	59	63	68		85			Ì
	35	40	45 46	51	55	59	63	69		-			İ
r	Briefly exporesentation	n of data							t type of a	graph for	08	1	1 7
T	Define ger	atic algo	rithm an	d discuss	its applie	cation in	civil indu	ıstry.			08	2	
<u> </u>	From the be correlated Input Oil Output Electricit	6.9 1.9	8.2 3.5	7.8 6.5	4.8 1.3	9.6 5.5	5 8		7.7 2.2		12	3	4
1	Also find	the equat								is found			
	to be 157 lifetime of that it is g	Ohrs with f bulb progreater the	n a stand oduced b in 1600 b	ard deviately the control one tail	ation of npany is 5% level 1 test of t	150 hour 1600 ho of signifi esting hy	s. Test ti urs again cance. pothesis.	st the alt	ernative h	y is found the mean hypothesis	08	2	3
And the second s	A manuf machine hours bet the follow Brand	acturer vused for ween the ving deta	vants to excavati overhau	test the on are ed ls. A ran	hypothes qual. The dom sam	sis that t lifetime	he mean : is meas	ured by	the no.or	brands of operating each gives	1	2	3
1	X Brand	900 1170	1200 970	1250 880	1550 1410	700	775	940	1650	950			
		1 1 7 (1)	14: / ()	: Y Y ()	1 1 /4 1 1 1	/ 1 / 1 / 1	1 (/)	/"T\!	1 10000				

SARDAR PATEL COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to University of Mumbai)

Munshi Nagar Andheri (W) Mumbai 400058 **End Semester Exam**

Nov-Dec 2017

Max. Marks: 100

B. Tech Class:

Name of the Course: Environmental Engineering II

Course Code: BTC 404

Duration: 3 Hrs

Semester: VII

Program: B. Tech Civil

Master file.

Instructions:

Attempt any five questions out of seven

Draw neat sketches/diagrams wherever required

Assume suitable data if necessary and state them clearly

Figure on right indicate maximum marks for the given question, course outcomes attained and module no. of questions

Q1 (a)	Answer of following questions: The levels of air pollutants as observed in Anand Vihar in Delhi (especially during winter months after Diwali) were as follows PM 10= 1084ppm PM 2.5= 430 ppm NO ₂ =111ppm Ozone= 69ppm SO ₂ =89ppm Comment on the values. Explain with regards to ELR and DALR and various types	(20) (10)	CO1-4	M.1
(b)	of plumes observed during various times in a day. episodes which have occurred due to similar conditions in past. The Hydrocarbons in Jamnagar area of India were found to be 16000mg/kg of soil. The Hydrocarbons in Jamnagar area of India were found to be 18000mg/kg of soil.	(05)	CO1, 3	M.2
(c)	whereas there shouldn't be any present in natural 300 or and 200 mg/kg. Explain any two techniques which can be adopted to remediate soil. Convert the following quantities (i) 250 μg/m³ of NO ₂ to ppm at 1.5 atm and 25°C (ii) 10% HC to μg/m³ at 1 atm and 15°C	(05)	CO3, 4	M.1
Q2 (a)	Answer of following questions: Explain crown corrosion and self cleansing velocity for sewers? In Noida it was found that there is a 50 cm diameter sewer having an invert slope of 1 in 500 was flowing full, determine the velocity of flow and discharge? Is the velocity is self-cleansing? What will be the velocity and discharge when the sewer is flowing 0.35 and 0.8 times 'D'. Consider $d/D = 0.35$, $v/V = 0.852$, $q/Q = 0.327$ and for d/D	(20) (10)	CO3	M3
(b)	=0.8, v/V =1.14, q/Q = 0.988.	(05)		
(D)	Explain with Road officers 2		1 c	of 4

	· ·			
	Final year B. Tech. Civil. Sem VII	1	The same of the same	17
(c)	Enlist shapes of sewers. Explain differences of egg-shaped and circular sewers. Enlist the structural loads and stresses considered while doing structural design of sewer	(05)	CO2,3	М3
Q3	Answer the following questions:	(20)		
(a)	A river named Thames flows through England and tends to receive untreated sewage from the London. Explain the natural methods available for purification of the river along with the zones in river. Explain factors impacting purification.	(05)	CO2,3	M4
(b)	Derive an equation for 1st stage BOD curve. The dilution water (CONTROL) has initial DO of 8 mg/L and the diluted sample from has DO 8 mg/L. The dilution for BOD sample is 1%. After 5 days at 20°C DO in diluted sample falls to 3 mg/L and that of Control is 7.8 mg/L. Find BOD ₅ of sample at 20°C. The K_{10} value is 0.1/days. Find the BOD of same sample at 40°C at the end of 2 days. Θ = 1.056	(7.5)	CO2,3	M.4
(c)	Define relative stability, population equivalent, aerobic process, facultative process and anoxic processes	(7.5)	CO3	M4
Q4	Answer any two of the following questions:	(20)		
(a)	The Municipality of Rajkot needs to design a wastewater treatment plant for a sewage generating from population of 1,00,000. The domestic wastewater to be treated has initial BOD of 300 mg/L and S.S. concentration of 330 mg/L. Determine BOD load in kg/day and solids loading in kg/day. Illustrate the basic flowsheet of wastewater treatment plant that can be proposed with function of each unit and expected reduction in BOD. The effluent standards as per the Government requires 30 mg/L of BOD and 100 mg/L of SS.If the treated wastewater is to be reused for industrial cooling water, list the additional units required.	(10)	CO2-4	M.5
(b)	Explain with Short Notes (i) Pumping station (ii) Skimming Tanks (iii)Relative stability	(10)	CO2-4	M.5
(c)	Explain grit chamber. Design a grit chamber only to treat average flow of 30 MLD of sewage to remove particles of size of 0.2 mm and specific gravity of 2.65. (Take $v=1.141 X 10^{-6} m^2/sec$, $K_c=3.5$)	(10)		
05	Answer any two of the following questions:			
Q5 (a)	Explain with short notes (1) Modification in activated sludge process (2) Rotating biological contactors (3) Stabilization Pond	(10)	CO1-2	M.5
(b)	Differentiate types of trickling filters with respect to design criteria. In a treatment plant in Rajkot high rate trickling filters are used as the secondary treatment. It is proposed to use two stage trickling filter plant for 5 MLD raw sewage with influent BOD as 300 mg/L. Organic loading that can be applied on first stage is 12000 kg of BOD/hectare.m/d. Find the outlet BOD after the treatment if recirculation ratio for both the stages is 1.25. Assume 25% reduction in PST.	(10)	CO3,4	M.5
(c)	In an alternative treatment plant in Rajkot activated sludge treatment is provided as biological treatment. Explain the activated sludge process to the engineers in the plant in written format with a sketch. Design a continuous flow completely mixed activated sludge process with following data. Sewage flow 5000 m³/d; Influent BOD = 300mg/L; Effluent BOD= 20 mg/L; MLVSS= 3000mg/L; MLVSS/MLSS=0.8; Return sludge concentration as SS= 15000mg/L; Y=0.7; k_d =0.05 d^{-1} ; Θ_c =10days. Compute oxygen requirement also. Give all checks	(10)	CO3,4	M.5
Q6 (a)	Answer the following questions: Explain septic tank. A hostel in Mumbai and has population of 200 residential graduates. Design septic tank with water demand of 180 lpcd. What would be the size of soak pit if the percolating capacity of the filtering media is 900 L m ³ d ⁻¹ ?	(20) (10)	CO1- CO3	M.6

Explain the process of anaerobic digestion.

B. Tech. Civil, Sem VII (b) Determine sludge volume before and after digestion and percentage reduction of 750 kg (dry basis) of primary sludge with following characteristics. Assume 60% of volatile solids are destroyed during digestion. (assume γ_w =1000kg/m3)

Characteristics	Primary	Digested	
Solids	5%	10%	
Volatile Solids (VS)	60%	60% destroyed in digester	
Sp.gr. of Fixed Solids (FS)	2.5	2.5	
Sp.gr. of Organic Solids (VS)	~1	~1	

	form the following questions:	(20) CC	- -
Q 7	Answer any four the following questions:	(05)	M.7
(a)	Give salient features of Air Act, 1981	(05)	M.7
(b)	Explain auditing and types of audits	(05)	M.3
(c)	Rain water harvesting	(05)	M.6
(d)	Secondary sedimentation	(05)	M.5
(e)	Sludge foaming and sludge bulking		

Formula Sheet:

$$\begin{split} & V_{\rm S} = \underbrace{p_{w}\,g_{\cdot}({\rm Ss}-1){\rm d}^{2}}_{18\,\mu} \\ & \text{Or } V_{\rm S} = \underbrace{g_{\cdot}({\rm Ss}-1){\rm d}^{2}}_{18\,\mu} \\ & \text{Or } V_{\rm S} = \underbrace{g_{\cdot}({\rm Ss}-1){\rm d}^{2}}_{18\,\nu} \\ & \text{Or } V_{\rm S} = 418({\rm Ss}-1){\rm d}^{2} \\ & \text{Or } V_{\rm S} = 418({\rm Ss}-1){\rm d}^{2} \\ & \text{Or } V_{\rm S} = 418({\rm Ss}-1){\rm d}^{2} \\ & \text{Or } V_{\rm S} = \frac{100}{100} \\ & V_{\rm c} = 3 \text{ To } 4.5 \ \sqrt{(g \text{ d} \text{ (Ss}-1))} \\ & V_{\rm c} = \frac{\sqrt{8\beta g({\rm S_{s}}-1){\rm d}}}{f} \underbrace{E_{\rm c}} = \frac{100}{1-\frac{100}{1-\frac{0.432}{1-E_{\rm c}}}\sqrt{\frac{w_{\rm c}}{V_{\rm F}}}} \\ & Cos \frac{\theta}{2} = \left(1 - \frac{2d}{D}\right) \\ & I_{\rm Eal/f}^{\rm in}, \quad I_$$

$$\theta_c = \frac{V * x}{Q_w x_w + Q_e x_e} \qquad h_f = \text{flv}^2/(2\text{gD}) \qquad V_{sl} = \frac{W_s}{\gamma_w S_{sl} P_s} \\
U = \frac{Q * (So - S)}{V * X} \qquad O_2 \quad (g/d) = \underline{Q(So - S)} - 1.42 \text{ QwX}_r$$

CO1-

CO₄

(10)

M.6

Final year B. Tech. civil . Sem VII $V = \frac{YQ(S_0 - S)\theta_c}{x(1 + k_d)\theta_c} \qquad \theta_S = \frac{V_S}{Q} \qquad \frac{f}{m} = \frac{So * Q}{V * X} = \frac{So}{\theta * X}$

$$\theta_{c} = \frac{V.x}{(Q+Q_{r})x-Q_{r}x_{r}}$$

$$V = \frac{IQ(3_{o}-S)v_{c}}{x(1+k_{d})\theta_{c}}$$

$$y_{t} = L_{o}(1-10^{-Kt})$$

$$Q = 130/Vt \text{ (lpd/m}^{2}\text{)}$$

$$Volume = \frac{1}{2}[V_{f} + V_{d}]T_{1} + V_{d}T_{2}$$

Parameters

-8 hrs	n=0,1/8,1/4,1/2,1 ML= 90 m MW= 30 m L:W= 1.5:1 to 7.5:1 L:D= 5:1 to 25:1 D= 3 to 50 m 7.5-10% D= 2.5 or 3.5 125m³/d/m 185m³/d/m	1.8-3m; 1 to 4 m³/d/m²; 0.08-0.32kg/m³/d 0.9-2.5m; 10-40m³/m²/d; 0.32-1 kg/m³/d 0.6-1.6kg/d/m² 6-35 m 1.6-6.4 kg/d/m² 1 in 6 to 1 in 10 10-20 days 1.2 to 2 m 30-40 days 4.5 to 6 m and maximum 9m 0.9 m³ 0.1 to 0.15per capita with dry solid loading of 80 to 120 kg/m²/year 0.2 0.175 -0.2 m²/c/yr area or 60-120 kg/m²/yr
0.2-0.4/day	25-35 m ³ /m ² /d; 50- 60m ³ /m ² /d	$Q \max = \frac{5Q_{av}}{P^{0.2}} Q_{\max} = \left(1 + \frac{14}{4 + P^{0.5}}\right) Q_{av}$
5-15 days	15-35 m ³ /m ² /d; 40- 50m ³ /m ² /d	$Q = 10^4 A^* I^* \frac{Ri}{1000^* 3600}$
0.3-0.6kg/m ³ /d	25-50%	12 to 25 min/cm

Final year B. Tech. Civil. Sem VII Bharatiya Vidya Bhavan's

Sardar Patel College of Engineer

(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai – 400058.

END SEM

Max. Marks: 100 Duration: 3 hr Class: Btech

Name of the course: Limit State Method for RC Structures

Q.P. Code: BTC 401 Course Code: BTC 401

Sem-VII

Program: Civil Engineering

Master file.

Instructions:

1) Question No. 1 is compulsory.

2) Attempt any four from the remaining questions.

3) Draw reinforcement details wherever necessary.

4) Use of IS 456:2000 is permitted.

1	estion No		Maximum Marks	Course Outcome Number	Module Number
1	a)	State and explain the assumptions made in LIMIT State of collapse(Flexure). Also draw stress and strain diagram across the section.	05	1	2
	b)	What do you mean by Limit State. Explain various limit states.	05	1	2
	c)	When it is required to design doubly reinforced beam section. Also draw various forms of shear reinforcement provided in beam.	05	1,2	3
	d)	Derive design stress block parameters for singly RC sections for LSM of design.	05	1,2	2
2	a)	RC section 230mmx550mm depth overall and reinforced with 4-20mm dia is used as simply supported beam over an effective span of 6m. Determine the maximum udl beam can carry safely. Use M 25 and Fe-500	10	1,2	3
	b)	A rectangular beam 400mm x700mm effective depth is reinforced with 6 bars of 20mm dia in tension zone. The beam is subjected to udl of 50kN/m over span of 8m. Design shear reinforcement if two bars are bent up at 45° near end of each support. Use M30 and Fe 500	10	1,2	3
3)	a)	A RCC beam reinforced on tension side is 230mm wide with an effective depth of 500mm. It is reinforced with 4 bars of 20mm diameter . Calculate the ultimate moment of resistance using Ultimate Load Method. Take σ_{cu} =20N/mm ² and	08	1	1

		Final year B. Tech. Civil. Sem	VII		
		$\sigma_{\rm sy}=425{\rm N/mm}^2$.			
	b)	An isolated TEE beam section having an effective depth of 580mm, flange width of 12400mm, rib width of 300mm, slab depth of 120mm comprises of 8 bars of 20mm diameter. Calculate moment of resistance of beam. Use M-20and Fe-415.	12	1,2	4
4)	a)	Draw Pu-Mu curve for column of given proportions. Explain Region II and III of the curve in detail.	10	1,2	6
	b)	Design short helically reinforced column to resist service load of 1400kN.Use M30 and Fe 415.Draw reinforcement details.	10	1,2	6
5)	a)	Design a RC slab for an interior panel of a passage of a residential building. The size of panel is 4mx 4m.Using appropriate loading, design the slab panel. Give appropriate checks. Use M35 and Fe 415.	16	1,2	5
	b)	Explain in brief Whitney's theory	04	1,2	1
6)	a)	A rectangular column of dimension 300mmx450mm is subjected to an ultimate axial load of 1000kN.Design isolated footing for column assuming SBC as 250kN/m ² .Use M30 and Fe 415.	15	1,2	7
	b)	Write a short note on various types of footing under various conditions showing sketches.	05	1,2	7
7)	a)	A RCC beam 3000mm x450mm effective is subjected to an axial moment of resistance of 224kN-m.Find out the steel required using Ultimate Load Method. Take σ_{cu} =20N/mm ² and σ_{sy} =425N/mm ² .	10	1	1
	b)	Design one way slab panel of RCC residential building having dimensions 3mx6.5m. Using LL=2kN/m2 and F.F=1.5kN/m2, design the slab panel. Give appropriate checks. Use M30 and Fe 415.	10	1,2	5